(I've written this topic specifically for students taking MEI FP2.)
The hyperbolic functions are a group of functions similar to the trigonometric functions. They're not periodic but they have a strong relationship to the exponential function.
This is the hyperbolic sine function, pronounced 'shine'
$$ \sinh x = \frac{e^x -e^{-x}}{2} $$
The hyperbolic cosine function, pronounced 'cosh'
$$ \cosh x = \frac{e^x +e^{-x}}{2} $$
The hyperbolic tangent function, pronounced 'than' or sometimes 'tanch'
$$ \tanh x = \frac{\sinh x}{\cosh x} = \frac{e^x -e^{-x}}{e^x +e^{-x}} $$
Just like the $\cosec$, $\sec$, and $\cot$ functions you learned in C3, there are some equivalent hyperbolic functions. This is the hyperbolic cosecant function, defined for $x \ne 0$. It is pronounced 'cosech'
$$ \csch x = \frac{1}{\sinh x} = \frac{2}{e^x-e^{-x}} $$
The hyperbolic secant function, pronounced 'sech'
$$ \sech x = \frac{1}{\cosh x} = \frac{2}{e^x + e^{-x}} $$
The hyperbolic cotangent function, pronounced 'coth'
$$ \coth x = \frac{1}{\tanh x} = \frac{e^x +e^{-x}}{e^x -e^{-x}} $$
You need to be familiar with the graphs of the hyperbolic functions, and be able to sketch them.
This is the graph of $\sinh x$. It is equal to half the difference between $e^x$ and $e^{-x}$, and is an odd function.
This is the graph of $\cosh x$. It is equal to the arithmetic mean of $e^x$ and $e^{-x}$, and is an even function. The graph of $a\cosh(x/a)$ is called the catenary, the curve formed by a uniform string hanging freely between two fixed points under gravity.
This is the graph of $\tanh x$. It is an odd function.
This is the graph of $\csch x$. It is an odd function since $\sinh$ is also odd.
This is the graph of $\sech x$. It is an even function since $\cosh$ is also even.
And finally this is the graph of $\coth x$. It is an odd function since $\tanh$ is also odd.
In the exam you'll be asked to solve equations involving hyperbolic functions. Luckily most modern scientific calculators have a 'HYP' button that has hyperbolic functions preinstalled.
The hyperbolic functions are invertible, allowing you to solve equations like $\sinh x = 2$. The set of HYP functions on your calculator will include inverse hyperbolic functions so you could just find $x=\sinh^{-1} 2$. However you may be asked to find an exact solution by using their $e^x$ definitions.
Q) Find the exact solution of $\sinh x = 2$ using the $e^x$ definition of $\sinh$.
A) We have $$ \sinh x = 2 $$ Therefore $$ \frac{e^x-e^{-x}}{2} = 2 $$ Multiplying by $2e^x$ $$ e^{2x}-1 = 4e^x \Rightarrow e^{2x}-4e^x-1=0 $$ Solving for $e^x$ using the quadratic formula $$ e^x = \frac{4\pm\sqrt{16+4}}{2} = 2\pm\sqrt{5} $$ But $e^x \gt 0$ so $$ e^x = 2+\sqrt{5} \therefore x = \ln(2+\sqrt{5}) $$
The hyperbolic functions have a series of curious identities that are very similar to the trig identities. In fact that's part of the reason why the hyperbolic functions are each named after a trig function.
$$ \cosh^2 x - \sinh^2 x \equiv 1 $$
$$ \begin{align} \cosh^2 x - \sinh^2 x &= \left(\frac{e^x +e^{-x}}{2}\right)^2 - \left(\frac{e^x -e^{-x}}{2}\right)^2 \\ &= \frac{\left(e^x+e^{-x}\right)^2-\left(e^x-e^{-x}\right)^2}{4} \\ &= \frac{e^{2x}+2e^{x-x}+e^{-2x}-e^{2x}+2e^{x-x}-e^{-2x}}{4} \\ &= \frac{4}{4} = 1 \end{align} $$
Dividing through by $\cosh^2 x$ yields the next identity $$ 1-\tanh^2 x\equiv\sech^2 x $$
Instead dividing through by $\sinh^2 x$ yields the final identity $$ \coth^2 x - 1\equiv\csch^2 x $$
The similarities between the hyperbolic and trig functions are further highlighted by Osborn's rule which enables you to convert any trigonometric identity into a hyperbolic identity:
Replace sin with sinh and cos with cosh, but multiply any products of two sinh terms by -1
Indeed for the first identity I just showed you in the last section $$ \cos^2 x + \sin^2 x \equiv 1 \to \cosh^2 x - \sinh^2 x \equiv 1 $$
Since $\tanh = \sinh / \cosh$ it contains a $\sinh$ term $$ 1+\tan^2 x \equiv \sec^2 x \to 1-\tanh^2 x\equiv\sech^2 x $$ $$ \cot^2 x +1\equiv\cosec^2 x \to \coth^2 x - 1\equiv\csch^2 x $$
For the trig addition formulae you learned in C3 $$ \sin(A\pm B) = \sin A \cos B \pm \cos A \sin B \to \sinh(A \pm B) = \sinh A \cosh B \pm \cosh A \sinh B $$ $$ \cos(A\pm B) = \cos A \cos B \mp \sin A \sin B \to \cosh(A\pm B) = \cosh A \cosh B \pm \sinh A \sinh B $$ $$ \tan(A\pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} \to \tanh(A\pm B) = \frac{\tanh A \pm \tanh B}{1 \pm \tanh A \tanh B} $$
Using Osborn's rule you can convert any trig identitiy into a hyperbolic identity.
Since the hyperbolic functions are one-to-one, there are inverse functions with simple formulae.
The formula for the inverse hyperbolic sine function is $$ \sinh^{-1} x = \arsinh x = \ln(x+\sqrt{x^2+1}) $$
The inverse hyperbolic cosine function, defined for $x \ge 1$ $$ \cosh^{-1} x = \arcosh x = \ln(x+\sqrt{x^2-1}) $$
The inverse hyperbolic tangent function, defined for $|x|\lt 1$ $$ \tanh^{-1} x = \artanh x = \frac{1}{2}\ln\left(\frac{1+x}{1-x} \right) $$
The inverse hyperbolic cosecant function, defined for $x\ne 0$ $$ \csch^{-1} x = \arcsch x = \ln\left(\frac{1}{x}+\frac{\sqrt{1+x^2}}{|x|} \right)$$
The inverse hyperbolic secant function, defined for $x \in (0,1]$ $$ \sech^{-1} x = \arsech x = \ln\left(\frac{1}{x}+\frac{\sqrt{1-x^2}}{|x|} \right)$$
The inverse hyperbolic cotangent function, defined for $|x|\gt 1$ $$ \coth^{-1} x = \arcoth x = \frac{1}{2}\ln\left(\frac{x+1}{x-1} \right) $$
Q) Solve $\sinh^2 x - \cosh x = 1$.
A) Using the identity $\cosh^2 x - \sinh^2 x \equiv 1$ and rearranging $$ \left(\cosh^2 x - 1\right)-\cosh x - 1 = 0 $$ $$ \Rightarrow \cosh^2 x - \cosh x - 2 = 0 $$ Then factorising $$ \left(\cosh x+1\right)\left(\cosh x-2\right) = 0 $$
So $\cosh x = -1,2$. However, $\cosh x \gt 0$ so the only working solution is $\cosh x = 2$. Therefore $$ x = \arcosh 2 = \ln(2+\sqrt{2^2-1}) = \ln(2+\sqrt{3}) $$
Q) Solve $\coth^2 x + 5\csch x + 5 = 0$.
A) Using the identity $\coth^2 x - 1 \equiv \csch^2 x$ $$ \left(\csch^2 x + 1\right)+5\csch x + 5 = 0 $$ $$ \Rightarrow \csch^2 x +5\csch x + 6 = 0 $$ Then factorising $$ \left(\csch x+3\right)\left(\csch x+2\right) $$
So $\csch x = -3,-2$. Therefore $$ x = \arcsch (-3) = \ln\left(\frac{1}{-3}+\frac{\sqrt{1+\left(-3\right)^2}}{|-3|}\right) = \ln\left(\frac{-1+\sqrt{10}}{3}\right) $$ Also $$ x = \arcsch (-2) = \ln\left(\frac{1}{-2}+\frac{\sqrt{1+\left(-2\right)^2}}{|-2|}\right) = \ln\left(\frac{-1+\sqrt{5}}{2}\right) $$
Q) (Hard) Show that $\sech(2x) = \left(\frac{\tanh^2 x -1}{\tanh^2 x +1}\right)^2$.
A) First off we have the identity $1-\tanh^2 x\equiv\sech^2 x$ so $$ \sech^2 (2x) = 1-\tanh^2 (2x) $$ By Osborn's rule we can find the identity $$ \tanh(A+ B) = \frac{\tanh A + \tanh B}{1 + \tanh A \tanh B} $$ Therefore $$ \tanh(2x) = \tanh(x+x) = \frac{\tanh x + \tanh x}{1 + \tanh x \tanh x} = \frac{2\tanh x}{1+\tanh^2 x} $$ Going back to the $\sech$ identity $$ \sech^2 (2x) = 1-\tanh^2 (2x) = 1-\left(\frac{2\tanh x}{1+\tanh^2 x}\right)^2 $$ Making a common denominator $$ 1 - \frac{4\tanh^2 x}{\left(1+\tanh^2 x\right)^2} = \frac{\left(1+\tanh^2 x\right)^2 - 4\tanh^2 x}{\left(1+\tanh^2 x\right)^2} $$ Expanding the square term in the numerator $$ \frac{\left(1+\tanh^2 x\right)^2 - 4\tanh^2 x}{\left(1+\tanh^2 x\right)^2} = \frac{1+2\tanh^2 x + \tanh^4 x - 4\tanh^2 x}{\left(1+\tanh^2 x\right)^2} $$ Then finally simplifying the numerator and factorising the numerator $$ \frac{\tanh^4 x - 2\tanh^2 x+1}{\left(1+\tanh^2 x\right)^2} = \frac{\left(\tanh^2 x -1\right)^2}{\left(\tanh^2 x +1\right)^2} = \left(\frac{\tanh^2 x -1}{\tanh^2 x +1}\right)^2 $$
The hyperbolic functions are fully differentiable, and you'll need to know how to differentiate and integrate various hyperbolic functions. In this section the striking similarities with the trig functions continue.
$$ \frac{d}{dx}\sinh (ax) = a\cosh (ax) $$
$$ \frac{d}{dx}\cosh (ax) = a\sinh (ax) $$
$$ \frac{d}{dx}\tanh (ax) = a\sech^2 (ax) $$
$$ \frac{d}{dx}\csch (ax) = -a\coth (ax)\csch (ax)$$
$$ \frac{d}{dx}\sech (ax) = -a\tanh (ax)\sech (ax)$$
$$ \frac{d}{dx}\coth (ax) = -a\csch^2 (ax) $$
Q) Differentiate $y=4\sinh^2 x$ with respect to $x$.
A) Let $y=u^2$ where $u = 2\sinh x$. Then using the chain rule $$ \frac{dy}{dx}=\frac{dy}{du}\times\frac{du}{dx}=2u\left(2\cosh x\right) = 8\sinh x\cosh x $$
It's worth noting that by Osborn's rule this is equal to $4\sinh(2x)$.
Q) Differentiate $y=\frac{\tanh x}{x}$ with respect to $x$.
A) Let $u=\tanh x$ and $v=x$. Then by the quotient rule for differentiation $$ \frac{dy}{dx}=\frac{vu'-uv'}{v^2} = \frac{x\sech^2 x-\tanh x}{x^2} $$
Q) Differentiate $y=\cosh(\sqrt{x})$ with respect to $x$.
A) Let $y=\cosh u$ where $u=\sqrt{x}$. Then using the chain rule $$ \frac{dy}{dx}=\frac{dy}{du}\times\frac{du}{dx}=\sinh u \times \frac{1}{2}x^{-1/2} = \frac{\sinh(\sqrt{x})}{2\sqrt{x}} $$
These are the integrals for hyperbolic functions
$$ \int \sinh (ax) \mathop{dx} = \frac{1}{a}\cosh(ax) +c $$
$$ \int \cosh (ax) \mathop{dx} = \frac{1}{a}\sinh(ax) +c $$
$$ \int \tanh (ax) \mathop{dx} = \frac{1}{a}\ln(\cosh(ax)) +c $$
$$ \int \csch (ax) \mathop{dx} = \frac{1}{a}\ln\left|\cosh(ax)-\coth(ax)\right| +c $$
$$ \int \sech (ax) \mathop{dx} = \frac{1}{a}\arctan(\sinh(ax)) +c $$
$$ \int \coth (ax) \mathop{dx} = \frac{1}{a}\ln(\sinh(ax)) +c $$
Where $c$ is a constant of integration.
Q) Evaluate $\int_{0}^{3} \sinh(x/2) \mathop{dx}$ to one decimal place.
A) $$ \int_{0}^{3} \sinh(x/2) \mathop{dx} = \left[2\cosh(x/2)\right]_{0}^{3} = 2\cosh(3/2)-2\cosh(0) = 2.7 \textrm{ units}^2 \textrm{ (1.d.p.)} $$
Q) Evaluate $\int_{0}^{1} x\cosh(x) \mathop{dx}$ to three significant figures.
A) We'll use integration by parts. Let $u=\sinh x$ and $v=x$ so that $u'=\cosh x$ and $v'=1$. $$ \begin{align} \int u'v &= uv - \int uv' \\ \int_{0}^{1} x\cosh(x) \mathop{dx} &= \left[x\sinh x - \int\sinh x \mathop{dx} \right]_{0}^{1} \\ &= \left[x\sinh x - \cosh x\right]_{0}^{1} \\ &= \sinh (1) - \cosh (1) - 0 + \cosh (0) \\ &= 0.632 \textrm{ units}^2 \textrm{ (3.s.f.)} \end{align} $$
You also need to know how to differentiate three inverse hyperbolic functions.
$$ \frac{d}{dx}\arsinh \left(\frac{x}{a}\right) = \frac{1}{\sqrt{x^2+a^2}} $$
$$ \frac{d}{dx}\arcosh \left(\frac{x}{a}\right) = \frac{1}{\sqrt{x^2-a^2}} $$
$$ \frac{d}{dx}\artanh \left(\frac{x}{a}\right) = \frac{a}{\sqrt{a^2-x^2}} $$
By knowing these derivatives of inverse hyperbolic functions you will be able to integrate certain functions. In the exam you might be asked to evaluate integrals of the form $$ \frac{1}{\sqrt{x^2+a^2}} ~\textrm{ and }~ \frac{1}{\sqrt{x^2-a^2}} $$
Indeed $$ \int \frac{1}{\sqrt{x^2+a^2}} \mathop{dx} = \arsinh \left(\frac{x}{a}\right) + c $$ $$ \int \frac{1}{\sqrt{x^2-a^2}} \mathop{dx} = \arcosh \left(\frac{x}{a}\right) + c $$
where $c$ is a constant of integration.
Q) Evaluate $\int_{2}^{5} \frac{1}{\sqrt{4x^2+1}} \mathop{dx}$.
A) Factorise out 4 in the denominator $$ \int_{2}^{5} \frac{1}{4x^2+1} \mathop{dx} = \int_{2}^{5} \frac{1}{\sqrt{4\left(x^2+\frac{1}{4}\right)}} \mathop{dx} = \frac{1}{2}\int_{2}^{5} \frac{1}{\sqrt{\left(x^2+\frac{1}{4}\right)}} \mathop{dx} $$ Now it's in standard form $$ \begin{align} \frac{1}{2}\int_{2}^{5} \frac{1}{\sqrt{\left(x^2+\frac{1}{4}\right)}} \mathop{dx} = \frac{1}{2}\left[\arsinh (2x)\right]_{2}^{5} &= \frac{1}{2}\ln\left(10+\sqrt{10^2+1}\right)-\frac{1}{2}\ln\left(4+\sqrt{4^2+1}\right) \\ &= \frac{1}{2}\ln\left(\frac{10+\sqrt{101}}{4+\sqrt{17}}\right) \end{align} $$
Q) Evaluate $\int_{1}^{4}\frac{1}{\sqrt{x^2-4}} \mathop{dx}$.
A) $$ \int_{1}^{4}\frac{1}{\sqrt{x^2-4}} \mathop{dx} = \left[\arcosh \left(\frac{x}{2}\right)\right]_{1}^{4} = \ln(2+\sqrt{2^2-1}) - 0 = \ln(2+\sqrt{3}) $$